

Cambridge O Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 5070/22

Paper 2 Theory

October/November 2022

1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Section A: answer all questions.
- Section B: answer three questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

This document has 20 pages. Any blank pages are indicated.

DC (CJ/SG) 301822/3 © UCLES 2022

[Turn over

Section A

Answer all the questions in this section in the spaces provided.

The total mark for this section is 45.

1 The diagram shows part of the Periodic Table.

I	Ш								III	IV	V	VI	VII	VIII			
													С	N	0	F	
	Mg											Al				Cl	Ar
K	Са				Cr		Fe			Cu	Zn					Br	
																I	
									Pt								

Answer the following questions using only the symbols of the elements in the diagram.

Each symbol may be used once, more than once or not at all.

Give the symbol of the element that:

(a)	is a catalyst in the Haber process	
		[1]
(b)	is used to make food containers because of its resistance to corrosion	
		[1]
(c)	is about one percent by volume of dry air	
		[1]
(d)	is extracted from haematite	
		[1]
(e)	forms an ion with a charge of –2.	
		[1]

[Total: 5]

This question is about halogens and halogen compounds.

(a)	(i)	Draw a dot-and-cross diagram to show the arrangement of electrons in a chlorin molecule.	е
		Show only the outer shell electrons.	
	(ii)	State one use of chlorine.	
		[1]
(b)	Αqι	ueous chlorine reacts with aqueous potassium bromide.	
		$Cl_2(aq) + 2KBr(aq) \rightarrow Br_2(aq) + 2KCl(aq)$	
	(i)	State the colour of Br ₂ (aq).	
		[1]
	(ii)	Explain, using ideas about the reactivity of the halogens, why aqueous bromine doe not react with aqueous potassium chloride.	s
()		[′	1]
(c)		mine is a liquid at room temperature.	
	Des	scribe the arrangement and separation of the particles in a liquid.	
	arra	angement	• •
	sep	aration[2	 2]
(d)	Chl	orofluorocarbons (CFCs) are atmospheric pollutants which deplete the ozone layer.	
	Exp	plain the importance of the ozone layer.	
	Des	scribe one problem caused by the depletion of the ozone layer.	
	imp	ortance	
	pro	blem	

[2]

2

	3	The alkanes are	a homologous	series of hy	vdrocarbons
--	---	-----------------	--------------	--------------	-------------

(a) Give the general formula for the alkar
--

(b) The structure of one isomer of an alkane is shown.

(i)	Name	this	alkane

(ii) Draw the structure of a different isomer of this alkane. Show all of the atoms and all of the bonds.

[1]

- (c) The fractional distillation of petroleum (crude oil) produces fractions containing alkanes of different chain lengths.
 - (i) Separation by fractional distillation depends on a physical property of the fractions.

Name this physical property.

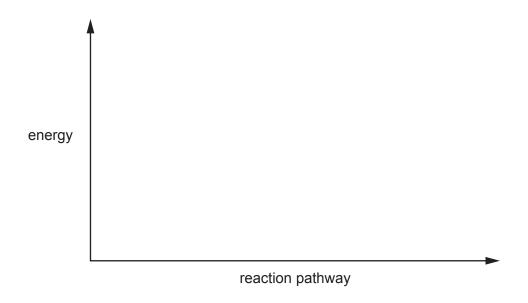
- 4	-
11	-
11	- 1

(ii) Naphtha is one fraction separated from petroleum (crude oil).

State the main use of the naphtha fraction.

(d)	Lar	ger alkane molecules are cracked to form smaller alkane molecules.
	(i)	Explain the importance of cracking larger alkanes into smaller alkanes.
		[1]
	(ii)	State two conditions needed for cracking.
		1
		2[2]
(e)		anes react with chlorine in the presence of ultraviolet light to form compounds that contain oon, hydrogen and chlorine.
	A co	ompound contains 37.8% carbon, 6.30% hydrogen and 55.9% chlorine by mass.
	Cal	culate the empirical formula of this compound.
		empirical formula[2]
		[Total: 10]

This	s question is about ammonium sulfate, (NH ₄) ₂ SO ₄ .
(a)	Ammonium sulfate is a fertiliser.
	Explain why farmers put fertilisers on soil where crops are grown.
	[1]
(b)	Explain why farmers do not add calcium hydroxide to the soil immediately after adding ammonium sulfate.
	[2]
(c)	Calculate the percentage by mass of nitrogen in ammonium sulfate.
	Give your answer to three significant figures.
	percentage by mass[3]
(d)	Complete the equation for the reaction of ammonium sulfate with aqueous sodium hydroxide.
	$(NH_4)_2SO_4 + 2NaOH \rightarrow \dots + \dots + \dots$ [2]


4

(e) Ammonium sulfate decomposes when heated. The reaction is endothermic.

$$3(\mathrm{NH_4})_2\mathrm{SO_4} \, \longrightarrow \, 4\mathrm{NH_3} \, + \, 3\mathrm{SO_2} \, + \, \mathrm{N_2} \, + \, 6\mathrm{H_2O}$$

Complete and label the energy profile diagram for this reaction to include:

- the reactant and products
- the enthalpy change of the reaction.

[2]

[Total: 10]

- 5 This question is about metals and metal compounds.
 - (a) Zinc reacts with aqueous copper(II) ions.

$$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$$

		$Zn + Cu^{2} \rightarrow Zn^{2} + Cu$	
	Ехр	lain why this reaction involves both oxidation and reduction.	
	Use	the equation and ideas about electron transfer in your answer.	
			[2]
(b)	Aqu	eous ammonia is added to aqueous zinc ions.	
	Des	cribe the observations when:	
	a fe	w drops of aqueous ammonia are added	
	exce	ess aqueous ammonia is added.	
			 [2]
(c)	Mol	ten zinc chloride conducts electricity.	
	(i)	Predict the products formed at the anode and the cathode when molten zinc chloride electrolysed.	e is
		anode	
		cathode	 [2]
	(ii)	Explain, in terms of structure and bonding, why zinc chloride has a high melting point	
			[2]

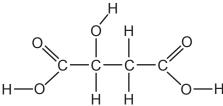
)	Alui	minium is extracted from its ore by electrolysis.	
	(i)	State why aluminium is extracted by electrolysis and not by reduction with carbon.	
			[1]
	(ii)	State one property of aluminium which makes it suitable for the construction of aircra	ft.
			[1]
((iii)	State one advantage of recycling metals such as aluminium and copper.	
			[1]
		[Total:	11]

Section B

Answer three questions from this section in the spaces provided.

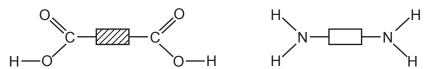
The total mark for this section is 30.

	e equation represents a closed container.		rogen and oxygen at a high temperature
		$N_2(g) + O_2(g) \rightleftharpoons 2N$	IO(g)
(i)	Predict what happer	ns to the position of equilibri	um when the pressure is increased.
	Explain your answe	r.	
	prediction		
	explanation		
	•		
			[2]
(ii)	The table shows the		[2] II) oxide, NO, in the closed container at
(ii)			
(ii)	three different temperature	concentration of NO	
(ii)	three different temperature in °C	concentration of NO in mol/dm ³	
(ii)	three different temperature in °C	concentration of NO in mol/dm ³	
(ii)	three different temperature in °C 800 1000 1200	concentration of NO in mol/dm³ 0.02 0.20 20.00	
(ii)	three different temporal temperature in °C 800 1000 1200 State what this informal temporal temperature in °C 800 1000 1000 1000 1000 1000 1000 1000	concentration of NO in mol/dm³ 0.02 0.20 20.00 mation shows about the ent	II) oxide, NO, in the closed container at
(ii)	temperature in °C 800 1000 1200 State what this inforest in the second in the seco	concentration of NO in mol/dm³ 0.02 0.20 20.00 mation shows about the enter.	II) oxide, NO, in the closed container at


[2]

© UCLES 2022 5070/22/O/N/22

6


(c)	Nitro	ogen(II) oxide, NO, reacts with hydrogen to produce ammonia and water.	
	Cor	struct the equation for this reaction.	
			[2]
(d)	Nitro	ogen oxides are pollutants in the atmosphere.	
	(i)	State one source of nitrogen oxides in the atmosphere.	
			[1]
	(ii)	Nitrogen oxides contribute to acid rain.	
		State one effect of acid rain on buildings.	
			[1]
	(iii)	State the formula of the ion that is present in all acids.	
			[1]
		[Total:	10]

- 7 This question is about carboxylic acids and polymers.
 - (a) The structure of an organic compound is shown.

		н н	
	Dec	luce the molecular formula of this compound.	
			[1]
(b)	Pro	panoic acid, C ₂ H ₅ COOH, reacts with methanol, CH ₃ OH, to form an ester.	
	(i)	Name this ester.	
		Draw the structure of this ester showing all atoms and all bonds.	
		name of ester	
		structure of ester	
			[2]
	<i>(</i>)		[4]
	(ii)	State one use of esters.	
			[1]
(c)	Etha	anoic acid can be produced by the bacterial oxidation of ethanol.	
	Give	e one other method of oxidising ethanol to produce ethanoic acid.	

(d) The simplified structures of a dicarboxylic acid monomer and a diamine monomer are shown.

- (i) Draw the partial structure of the condensation polymer formed from these two monomers to show:
 - two repeat units
 - all of the atoms and all of the bonds in the amide linkages.

	(ii)	State the meaning of the term <i>condensation</i> in condensation polymerisation.	
			[1]
e)	Prot	eins have amide linkages.	
	Prot	eins are hydrolysed using dilute acid.	
	Nam	ne the type of compound produced by this hydrolysis.	
			[1]
		[Total:	10]

[2]

The table shows the	reactivity of four metals with cold	d water and with steam		
The table shows the				
metal	reactivity with cold wa			
cerium	slow	fast		
nickel	none	very slow		
rubidium	very fast	explosive		
zinc	none	fast		
Put the four metals in	n order of increasing reactivity.			
La pat va pativa				
least reactive ——		→ most reactive		
The full exceeded of on				
The full symbol of an	ion of cerium is shown.			
	¹⁴⁰ ₅₈ Ce ³⁺			
Deduce the number	of electrons and neutrons in this	ion.		
number of electrons				
number of neutrons	***************************************			
number of neutrons				

(e) The effect of heat on crystals of green nickel(II) chloride, NiC l_2 • 6H $_2$ O is shown in the

oqu			
	$\begin{array}{ccc} \operatorname{NiC} l_2 \bullet \operatorname{6H_2O} & \Longrightarrow \\ \operatorname{green} \\ \operatorname{nickel}(\operatorname{II}) \operatorname{chloride} \end{array}$	$\begin{array}{cc} {\rm NiC} l_2 & + \\ {\rm yellow} \\ {\rm nickel(II)~chloride} \end{array}$	6H ₂ O
(i)	State the term used to describe salts crystallisation.	s, such as $\mathrm{NiC}\mathit{l}_{2}$, which	contain no water of
			[1]
(ii)	Describe how to change yellow nickel(II) chloride back to green ni	ckel(II) chloride.
			[1]
			[Total: 10]

9	(a)	Magnesium	carbonate	reacts	with	dilute	hydro	chloric	acid.

$$\mathrm{MgCO_3} \ + \ 2\mathrm{HC}\mathit{l} \ \longrightarrow \ \mathrm{MgC}\mathit{l}_2 \ + \ \mathrm{CO_2} \ + \ \mathrm{H_2O}$$

When $25.0\,\mathrm{cm^3}$ of dilute hydrochloric acid is added to excess magnesium carbonate, the volume of carbon dioxide gas produced at room temperature and pressure is $120\,\mathrm{cm^3}$.

(i)	Calculate the concentration	on, in mol/dm ³ ,	of the dilute h	vdrochloric acid
1.,		, in interior, and ,	or the anate m	y ai ooi iioi io aoi

	concentration mol/dm ³ [3]
(ii)	The reaction is repeated at a higher temperature. All other conditions stay the same.
	Describe how the rate of reaction changes.
	Explain your answer using ideas about collisions between particles.
	[2]
(iii)	The reaction is repeated using a higher concentration of hydrochloric acid. All other conditions stay the same.
	Describe how the rate of reaction changes.
	Explain your answer using ideas about collisions between particles.
	[2]
Dur	alumin is an alloy of aluminium, magnesium, copper and manganese.
Sta	te the meaning of the term <i>alloy</i> .
	TAT

© UCLES 2022 5070/22/O/N/22

(b)

(c)	Copper is purified by electrolysis using an impure copper anode and a pure copper cathod	de.
	Construct the ionic equation for the reaction taking place at the cathode.	
		[1]
(d)	A metal object can be electroplated with another metal.	
	State one use of electroplating.	
		[1]
	[Total:	10]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Ś
Ħ
ē
Ε
ē
Ш
4
₹
<u>ə</u> c
ab
`œ
\vdash
O
ᇹ
ŏ
»rio
Φ
<u>α</u>
Φ
Pe
\vdash

	III/	2	Те	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	25	Xe	xenon 131	98	Ru	radon			
	\				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	Н	iodine 127	85	Αţ	astatine -			
					8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ро	polonium –	116		livermorium -
	>				7	z	nitrogen 14	15	ட	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>B</u>	bismuth 209			
	≥				9	ပ	carbon 12	14	:S	silicon 28	32	Ge	germanium 73	20	S	tin 119	82	Ър	lead 207	114	Ρl	flerovium -
	≡				2	М	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	l_l	thallium 204			
											30	Zu	zinc 65	48	g	cadmium 112	80	Ρ̈́	mercury 201	112	ပ်	copernicium -
											29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
Group											28	z	nickel 59	46	Pd	palladium 106	78	五	platinum 195	110	Ds	darmstadtium -
Gro											27	ဝိ	cobalt 59	45	뫈	rhodium 103	77	Г	iridium 192	109	Μ	meitnerium -
		- :	I	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	92	SO	osmium 190	108	¥	hassium –
											25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium —
					_	pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	14	qN	niobium 93	73	<u>⊐</u>	tantalum 181	105	Op	dubnium —
						atc	re				22	j	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	꿒	rutherfordium -
											21	Sc	scandium 45	39	>	yftrium 89	57–71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ва	barium 137	88	Ra	radium —
	_				3	=	lithium 7	1	Na	sodium 23	19	¥	potassium 39	37	&	rubidium 85	22	S	caesium 133	87	ъ́	francium -

71	Ρ	lutetium 175	103	۲	lawrenciun	I
			102			1
69	T	thulium 169	101	Md	mendelevium	ı
89	щ	erbium 167	100	Fm	ferminm	1
29	웃	holmium 165	66	Es	einsteinium	_
99	۵	dysprosium	86	Ç	califomium	1
99	Tp	terbium 159	97	BK	berkelium	-
64	Вd	gadolinium 157	96	Cm	curium	-
63	En	europium 152	95	Am	americium	_
62	Sm	samarium 150	94	Pu	plutonium	1
61	Pm	promethium	93	ď	neptunium	ı
09	PΝ	neodymium 144	92	\supset	uranium	238
59	ď	praseodymium	91	Ра	protactinium	231
58	Ce	cerium 140	06	T	thorium	232
22	Га	lanthanum 139	68	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).